Division of Engineering
 Division of Engineering
 Chair: Martin Mintchev, Ph.D., P.E., FAIMBE

Engineering Science Program
 B.S. in Engineering Science

FACULTY: Philips Agboola, Ph.D.

The Engineering Science B.S. degree program offers students a series of multidisciplinary courses which emphasize both understanding and integrated applications of science, technology engineering and mathematical (STEM) concepts. The program is designed to prepare students either for immediate entry into the workforce or for pursuit of graduate degrees in specific engineering disciplines of their choice. The curriculum provides a broad foundation for such disciplines along with an education which embraces a Christian worldview.

In addition to taking core courses in mathematics, physics, chemistry, computer information systems, and technical writing, students will study the foundational engineering principles of statics, dynamics, mechanics of materials, thermodynamics, electrical circuit analysis, and microelectronic incorporating sound economical standards and ethical responsibility. During their senior year, all students will select a focus area of study and complete a design project that integrates the principles of research, process, and analysis as applied to engineering.

Since it is necessary for potential engineering science students to have adequate high school preparation for this program, it is highly recommended that they take high school physics, chemistry, and four years of mathematics in preparation for the pursuit of this degree. Mathematical proficiency is essential to engineering and placement tests are given to all incoming freshmen, and those who do not qualify to begin Calculus I will be required to take additional leveling mathematics courses.

Mission Statement for Engineering Science

The Howard Payne University Engineering Science Program prepares liberal arts students to serve God and humanity in a Christ-centered manner by producing graduates with the knowledge and skills; personal and professional integrity; and intellectual inquisitiveness to affect the world through an engineering profession.

Program Goal
Engineering Science graduates will be equipped for success in the career path of their choosing; and be capable of pursuing an advanced degree and/ or a career where they may attain job satisfaction and professional growth while serving God and humanity.

Program Educational Objectives (PEOs)

PEO-1 Professionalism. Graduates will become practicing professionals or pursue a graduate degree in the Engineering Science or a related field.
PEO-2 Continuous Learning. Graduates will demonstrate the importance of maintaining and enhancing their professional skills through life-long learning.

PEO-3 Engagement in Society. Graduates, in service to God and community, will act with economical, ethical and societal awareness expected of practicing engineering professionals.

The Engineering Science Program

For the Engineering Science program, the desired student competencies are as follows:

1. An ability to identify, formulate, and solve engineering problems by applying principles of science, technology, engineering, and mathematics.
2. An ability to apply both analysis and synthesis in the engineering design process, resulting in designs that meet desired needs.
3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
4. An ability to communicate effectively with a range of audiences.
5. An ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts.
6. An ability to recognize the ongoing need for additional knowledge and locate, evaluate, integrate, and apply this knowledge appropriately.
7. An ability to function effectively on teams that establish goals, plan tasks, meet deadlines, and analyze risk and uncertainty.
GENERAL EDUCATION (Bachelor of Science) see page 46 \qquad 43 hours
MAT 2451 Calculus I or above should be chosen for the mathematics requirement CHE 1479 should be chosen for the lab science requirement HIS 1310 or HIS 1320 should be chosen for the History requirement
ADDITIONAL DEGREE REQUIREMENTS (Bachelor of Science)... 14 hours
Specific courses required are noted below under "Additional Degree Requirements"
TECHNOLOGY COMPONENT. 3 hours
```
                    Division of Engineering
    MAJOR - Engineering Science ............................................................................. 70 hours
    Total Hours in Degree Program 130 hours
    GENERAL EDUCATION Requirements ........................................................................ }43\mathrm{ hours
    ADDITIONAL DEGREE REQUIREMENTS ........................................................ 14 hours
    MAT 2461 Calculus II................................................................. }4\mathrm{ hours
    MAT }3361\mathrm{ Calculus III (Fall) ......................................................... }3\mathrm{ hours
    PHY }2439\mathrm{ University Physics I (Fall).............................................. }4\mathrm{ hours
    MAT 3302 Linear Algebra (Fall) ................................................... }3\mathrm{ hours
    TECHNOLOGY COMPONENT......................................................................... }3\mathrm{ hours
    CIS 1339 Introduction to Information Technology .......................... }3\mathrm{ hours
    MAJOR - Engineering Science................................................................................. }70\mathrm{ hours
        Core STEM Requirements.............................................................................. }15\mathrm{ hours
            PHY }2449\mathrm{ University Physics II (Spring)......................................... }4\mathrm{ hours
            MAT }3451\mathrm{ Differential Equations (Spring)..................................... 4 hours
            MAT 4441 Applied Probability and Statistics (Spring)...................... 4 hours
            MAT 4371 Numerical Analysis (Fall, odd years)................................ }3\mathrm{ hours
            Additional Miscellaneous Requirements......................................................
            ENG 3306 Technical Writing (Spring, even years)............................ }3\mathrm{ hours
Core Engineering Science Course Requirements............................................................ }38\mathrm{ hours
    ENS 1101 Introduction to Engineering (Fall)............................................. }1\mathrm{ hour
    ENS 1305 Engineering CAD Systems (Fall)............................................... }3\mathrm{ hours
    CIS 1359 Programming Logic (Fall, Spring).............................................. }3\mathrm{ hours
    ENS 1379 Engineering Principles and Practice (Spring).............................. }3\mathrm{ hours
    ENS 2301 Statics (Spring)......................................................................... }3\mathrm{ hours
    ENS 2302 Dynamics (Fall)...................................................................... }3\mathrm{ hours
    ENS 3339 Mechanics of Materials (Fall)................................................. }3\mathrm{ hours
    ENS 2334 Engineering Economic Analysis (Fall, odd years)....................... }3\mathrm{ hours
    ENS 3331 Thermodynamics (Fall).......................................................... }3\mathrm{ hours
    ENS 3351 Engineering Ethics (Fall, even years)........................................ }3\mathrm{ hours
    ENS 4109 Engineering Design Project Lab Proposal (Spring)..................... 1 hour
    ENS 4309 Electrical Circuit Theory (Fall)................................................. }3\mathrm{ hours
    ENS 4369 Engineering Design Project Lab I (Fall)..................................... }3\mathrm{ hours
    ENS 4379 Engineering Design Project Lab II (Spring)................................. }3\mathrm{ hours
            Directed STEM Elective Requirements....................................................... 14 hours
            CIS 2389 Object Oriented Programming I (Fall)......................... }3\mathrm{ hours
            CIS 3309 Object Oriented Programming II (Spring, odd years) OR
            CIS 3329 Visual Programming (Spring, even years)..................... }3\mathrm{ hours
            ENS 2104 STEM Internship (Fall, Spring, Summer)...................... }1\mathrm{ hour
            ENS }2204\mathrm{ STEM Internship (Fall, Spring, Summer) .................... }2\mathrm{ hours
            ENS 2304 STEM Internship (Fall, Spring, Summer) .................... }3\mathrm{ hours
            CIS 2399 3-D Printing (Spring)................................................... }3\mathrm{ hours
            ENS 3104 Special Topics in Engineering Applications............. }1\mathrm{ hour
            ENS }4344\mathrm{ Advanced Engineering Research & Development.... }3\mathrm{ hours
            SEN }2301\mathrm{ Computer Architecture (Spring)............................. }3\mathrm{ hours
            SEN }3301\mathrm{ Microprocessors (Fall).......................................... }3\mathrm{ hours
            SEN 3302 Embedded Systems (Spring)................................... }3\mathrm{ hours
```

ENS 2104, 2204, or 2304 may be repeated but only four hours of engineering internship may apply toward the engineering degree requirements.

Total Hours in Degree Program 130 hours

The Engineering Science degree contains 48 hours of engineering science courses, which includes 22 hours of advanced engineering science courses described above. The degree also includes a minimum of 35 hours of science and mathematics, which includes a minimum of 10 hours of advanced mathematics.

All prerequisites must carry a grade of " C " or better, and Engineering Science majors must carry a grade of " C " or better in all ENS courses.

Division of Engineering

Engineering Science Minor

Engineering Science Minor .. 20 hours	
PHY 2439 University Physics	4 hours
PHY 2449 University Physics I	4 hours
ENS 1379 Engineering Principles and Practice	3 hours
ENS 2301 Statics	3 hours
ENS 3339 Mechanics of Materials	3 hours
ENS 3311 Thermodynamics.	3 hours
Biomedical Engineering Minor.. 22 hours	
PHY 2439 University Physics I.. 4 hours	
PHY 2449 University Physics II.. 4 hours	
ENS 1379 Engineering Principles and Practices ... 3 hours	
ENS 2301 Statics ... 3 hours	
BIO 1459 General Biology I ... 4 hours	
BIO 2489 Human Anatomy and Physiolog	4 hours

Students cannot use the same courses for two different minors. Calculus I, II and III (MAT 2451, 2461 and 3361), ENS 1101 and CHE1489 are prerequisites and students must make a " C " or better in these prerequisites.

All prerequisites must carry a grade of " C " or better, and Engineering Science majors must carry a grade of "C" or better in all ENS courses.

